
HPLC Method Description for In-process Control of Intermediates

Project	Pyronaridine_INV-054926
Compound	PNDa01, PNDa02, PNDa06, PNDa04 and PND
Purpose	Method Description
Category	Methods
Substance Type	Intermediate
Report ID	INV_054926_HPLC_M1 Version 1.0

Authors

Cai Alain

Approvers

Distribution

Zhou Irvin, Pyronaridine (INV-054926) project team, Approvers

Table of contents

1.	Objective		3
2.	Summ	Summary and conclusion	
3.	Experii	mental	6
	3.1.	HPLC	6
	3.2.	Equipment and reagents	7
	3.3.	Solutions	7
	3.3.1.	Diluent	7
	3.3.2.	Mobile phase preparation	7
	3.3.3.	Solution preparations	7
	3.4.	Proposed injection sequence and system suitability test	9
	3.5.	Calculation	10
4.	Figure	S	11

1. Objective

This method 'INV_054926_HPLC_M1' for intermediates of Pyronaridine (INV-054926) project is developed by HPLC. The parameters of the reversed phase HPLC method suitable for inprocess control of intermediate steps shall be described in this document.

2. Summary and conclusion

The method is applied for the HPLC testing of all intermediates (in-process control). This method is based on reversed phase liquid chromatography with UV detection and gradient elution using a Waters Atlantis T3, 3µm, 150 x 4.6mm HPLC column.

Compound	Structure	Retention time (RT)	RRT	
PNDa01 step			-	
6-methoxy-3-aminepyridine (SM 2)	H ₃ C _O N ^{NH2}	ca. 6.6 min	ca. 0.34	
PNDa01 impurity 2	СІ	ca. 17.4 min	ca. 0.91	
2,4-dichlorobenzoic (SM 1)	а	ca. 18.0 min	ca. 0.94	
PNDa01 impurity 1	СІСІОН	ca. 18.2 min	ca. 0.95	
PNDa01		ca. 19.2 min	1.00	
PNDa01 impurity 3		ca. 20.5 min	ca. 1.07	
PNDa02 step				
PNDa01		ca. 19.2 min	ca. 0.85	
BIA		ca. 21.9 min	ca. 0.97	

 Table 1
 Structure, Retention time and RRT of all intermediates and their related substances

Compound	Structure	Retention time (RT)	RRT
PNDa02		ca. 22.5 min	1.00
PNDa06-HCl step			
PNDa06		ca. 7.7 min	1.00
Acetaminophen (SM5)		ca. 8.1 min	ca. 1.05
PNDa04-HCI step			
PNDa04		ca. 6.4 min	1.00
PNDa06		ca. 7.7 min	ca. 1.20
PND step	I	I	
PNDa04		ca. 6.4 min	ca. 0.54
DIA		ca. 11.4 min	ca. 0.97
PND		ca. 11.8 min	1.00
DIN		ca. 13.4 min	ca. 1.14

Compound	Structure	Retention time (RT)	RRT
TGF-001 impurity 1		ca. 16.2 min	1.37
TGF-001 impurity 2	C CH3	ca. 17.1 min	1.45
PNDa02	о с н,	ca. 22.5 min	1.91

Example chromatograms and extracted HPLC-PDA spectra are given in Section 4.

3. Experimental

Equivalent equipment or grade of materials can be used.

3.1. HPLC

- HPLC System: Quaternary pump module (e.g.: Waters Alliance 2695)
 PDA detector (e.g.: Waters Alliance 2998)
 Auto sampler (e.g.: Waters Alliance 2695)
 - Column oven (e.g.: Waters Alliance 2695)
- Empower-control and integration software or equivalent
- Column: Waters Atlantis T3, 3µm, 150 x 4.6mm
- Flow rate: 1.0 mL/min
- Elution: Gradient mode
- Run time: 30.0 min
- Detection:

PNDa01 step	254 nm
PNDa02 step	254 nm
PNDa06-HCl step	254 nm
PNDa04-HCl step	278 nm
PND step	278 nm

- Injection: 10 µL
- Column temp.: 35°C ± 5°C
- Auto sampler temp.: Room temperature
 - Mobile phase (see section 3.3.2):
 - **A:** 0.1% TFA in Water
 - **B:** 0.1% TFA in Acetonitrile
- Diluent:

•

PNDa01 step	$1M Na_2CO_3$ in water/Acetonitrile=90/10 v/v	
PNDa02 step	2-MeTHF	
PNDa06-HCl step	Acetonitrile/ water = 20/80 v/v	
PNDa04-HCl step	Acetonitrile/ water = 5/95 v/v	
PND step	Acetonitrile/ water = 50/50 v/v	

- Needle wash: Water/ Acetonitrile (50:50 v/v)
- Equilibration time: 5 min
- Gradient:
- Table 2Gradient Table

Time (min)	% A	% B
0.0	100.0	0
3.0	100.0	0
13.0	65.0	35.0
20.0	1.0	99.0
25.0	1.0	99.0
25.1	100.0	0

Time (min)	% A	% B
30.0	100.0	0

3.2. Equipment and reagents

Balance: e.g.: Mettler Toledo XP5

- Acetonitrile: HPLC grade, e.g.: Merck LiChrosolv
- Water: HPLC grade, e.g.: from Milipore ultra-pure water system
- TFA: HPLC grade, e.g.: Sigmer-Aldrich
- 2-MeTHF: HPLC grade, e.g.: Innochem
- DMSO: HPLC grade, e.g.: Innochem
- Glassware: 10, 50, 100 mL volumetric flasks, 1L graduated cylinders
- Pipette: e.g.: 1.0, 5.0 mL Pipette

3.3. Solutions

3.3.1. Diluent

Different volumes can be prepared as soon as the solvent ratio is the same.

Diluent 1: 1M Na₂CO₃ in water/Acetonitrile=90/10 v/v for PNDa01

Diluent 2: 2-MeTHF for PNDa02

Diluent 3: Acetonitrile/ water = 20/80 v/v for PNDa06-HCl

Diluent 4: Acetonitrile/ water = 5/95 v/v for PNDa04-HCl

Diluent 5: Acetonitrile/ water = 50/50 v/v for PND

3.3.2. Mobile phase preparation

Preparation is described for a volume of 1 liter. Different volumes can be prepared as soon as the solvent ratio is the same.

Mobile phase A (0.1% TFA in Water):

In a suitable container, add 1000 mL of water and 1 mL of TFA. Mix well.

Mobile phase B (0.1% TFA in Acetonitrile):

In a suitable container, add 1000 mL of acetonitrile and 1 mL of TFA. Mix well.

3.3.3. Solution preparations

Other volumes and weigh-ins might be used as long as the final concentration remains the same. Min. weight of used balance must be considered during sample preparation.

3.3.3.1. Standard solutions

- PNDa01 step

IPC Standard Solution (10% SM1, 10% SM2 in 100% PNDa01):

Weigh approx. 2 mg of SM1, 2 mg of SM2 and 20 mg of PNDa01 reference standards into a 100-mL volumetric flask. Dissolve and dilute to volume with diluent 1. Mix well (SM1/ SM2: 0.02 mg/mL, PNDa01: 0.2 mg/mL).

- PNDa02 step

IPC Standard Solution (10% PNDa01 in 100% PNDa02):

Weigh approx. 0.8 mg of PNDa01 and 8 mg of PNDa02 reference standards into a 100-mL volumetric flask. Dissolve and dilute to volume with diluent 2. Mix well (PNDa01: 0.008 mg/mL, PNDa02: 0.08 mg/mL).

- PNDa06-HCl step

IPC Standard Solution (10% SM5 in 100% PNDa06):

Weigh approx. 3 mg of SM5 and 39 mg of PNDa06-HCl reference standards into a 100-mL volumetric flask. Dissolve and dilute to volume with diluent 3. Mix well (SM5: 0.03 mg/mL, PNDa06 free base: 0.3 mg/mL).

- PNDa04-HCl step

IPC Standard Solution (10% PNDa06 in 100% PNDa04):

Weigh approx. 6.5 mg of PNDa06-HCl and 83 mg of PNDa04-HCl reference standards into a 100-mL volumetric flask. Dissolve and dilute to volume with diluent 4. Mix well (PNDa06 free base: 0.05 mg/mL, PNDa04 free base: 0.5 mg/mL).

- PND step

IPC Standard Solution (10% PNDa02, 10% PNDa04 in 100% PND):

Weigh approx. 1.8 mg of PNDa02, 3 mg of PNDa04-HCl and 18 mg of PND reference standards into a 100-mL volumetric flask. Dissolve and dilute to volume with diluent 5. Mix well (PNDa04 free base/ PNDa02: 0.018 mg/mL, PND: 0.18 mg/mL).

3.3.3.2. Sample solutions

The IPC sample is submitted as a solution of each intermediate. Dilute the sample to a suitable concentration based on the estimated reaction solution concentration.

- PNDa01 step

For example: If the reaction solution is 360 mg/mL of PNDa01, transfer 0.5 mL of sample into a 50-mL volumetric flask and dilute to volume with diluent 1 (3.6 mg/mL), and then transfer 3 mL of that solution into a 50-mL volumetric flask and diluent to volume with diluent 1 (0.216 mg/mL).

- PNDa02 step

For example: If the reaction solution is 110 mg/mL of PNDa02, transfer 0.5 mL of sample into a 50-mL volumetric flask and dilute to volume with diluent 2 (1.1 mg/mL), and then transfer 0.7 mL of that solution into a 10-mL volumetric flask and diluent to volume with diluent 2 (0.077 mg/mL).

- PNDa06-HCl step

For example: If the reaction solution is 410 mg/mL of PNDa06 free base, transfer 0.5 mL of sample into a 50-mL volumetric flask and dilute to volume with diluent 3 (4.1 mg/mL), and then transfer 0.8 mL of that solution into a 10-mL volumetric flask and diluent to volume with diluent 3 (0.328 mg/mL of free base).

- PNDa04-HCl step

For example: If the reaction solution is 100 mg/mL of PNDa04 free base, transfer 0.5 mL of sample into a 50-mL volumetric flask and dilute to volume with diluent 4 (1 mg/mL), and then transfer 5 mL of that solution into a 10-mL volumetric flask and diluent to volume with diluent 4 (0.5 mg/mL of free base).

- PND step

For example: If the reaction solution is 230 mg/mL of PND, transfer 0.5 mL of sample into a 50-mL volumetric flask and dilute to volume with diluent 5 (2.3 mg/mL), and then transfer 0.8 mL of that solution into a 10-mL volumetric flask and diluent to volume with diluent 5 (0.184 mg/mL).

3.4. Proposed injection sequence and system suitability test

Sample name	No. of injections	SST acceptance criteria
Diamic (agreenia dilucent)] + N [1]	No interference between the blank
Blank (sample diluent)		peaks and the components of interest
IPC standard Solution	1	For identity
Sample solution	1	N/A

^[1] Additional blanks may be run until an acceptable baseline is obtained.

3.5. Calculation

Reaction monitoring by formula (%area):

PNDa01 step -

% SM2 (remaining by conversion) = $\frac{A_{SM2}}{A_{SM2} + A_{PNDa01}} * 100\%$

Where:

Asm2=peak area of SM2 in sample solution (diluted reaction solution)APNDa01=peak area of PNDa01 in sample solution (diluted reaction solution)

peak area of PNDa01 in sample solution (diluted reaction solution)

- PNDa02 step

% PNDa01 (remaining by conversion) = $\frac{A_{PNDa01}}{A_{PNDa01} + A_{PNDa02}} *100\%$

Where:

A _{PNDa01} =	peak area of PNDa01 in sample solution (diluted reaction solution)
$A_{PNDa02} =$	peak area of PNDa02 in sample solution (diluted reaction solution)

- PNDa06-HCI step

% SM5 (remaining by conversion) = $\frac{A_{SM5}}{A_{SM5} + A_{PNDa06}} * 100\%$

Where:

A _{SM5} =	peak area of SM5 in sample solution (diluted reaction solution)
A _{PNDa06} =	peak area of PNDa06 in sample solution (diluted reaction solution)

PNDa04-HCI step

% PNDa06 (remaining by conversion) = $\frac{A_{PNDa06}}{A_{PNDa06} + A_{PNDa04}} *100\%$

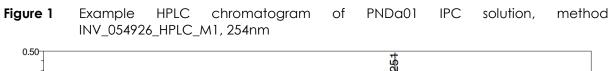
Where:

A _{PNDa06} =	peak area of PNDa06 in sample solution (diluted reaction solution)
A _{PNDa04} =	peak area of PNDa04 in sample solution (diluted reaction solution)

PND step

% PNDa02 (remaining by conversion) = $\frac{A_{PNDa02}}{A_{PNDa02} + A_{PND}} *100\%$

Where:


A _{PNDa02} = peak area of PNDa02 in sample solution (diluted reaction solut	ion)
--	------

Apnd = peak area of PND in sample solution (diluted reaction solution)

PHT International Inc.

Analytical DevelopmentINV 054926 HPLC M1 Version Error! Reference source not

4. Figures

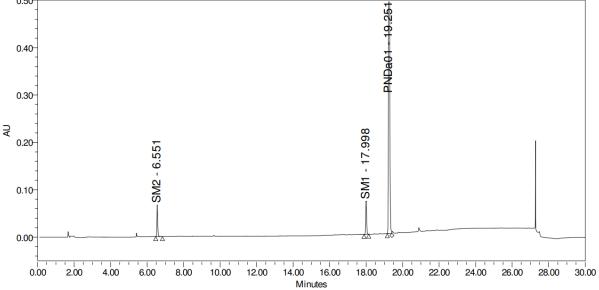
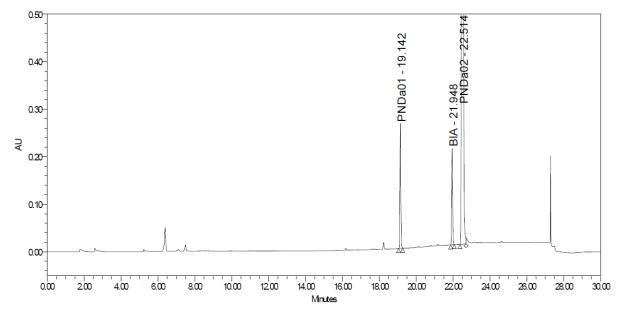
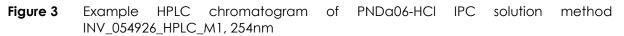




Figure 2 Example HPLC chromatogram of PNDa02 IPC solution, method INV_054926_HPLC_M1, 254nm

PHT International Inc.

Analytical DevelopmentINV 054926 HPLC M1 Version Error! Reference source not

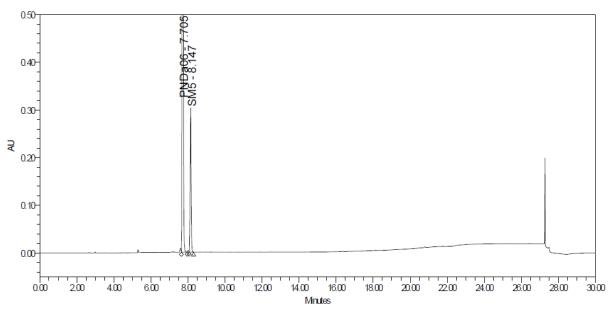
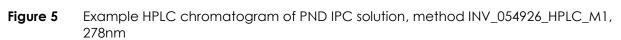
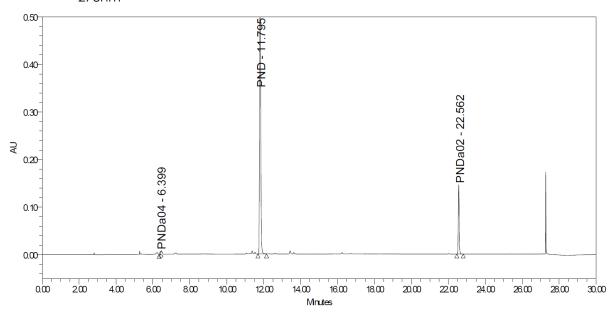




Figure 4 Example HPLC chromatogram of PNDa04-HCl IPC solution, method INV_054926_HPLC_M1, 278nm

